The air in a strong column thermal, heated initially by contact with the ground, is rising at a constant speed of V = 10 m/s. The conditions inside the column at point 1 near the ground are $T_1 = 300 \text{ K}$ and $p_1 = 10^5 \text{ Pa}$. Use R = 287 J/kg K, $c_p = 1004 \text{ J/kg K}$. Assume the column flow has negligible friction with the surrounding air.

a) Using the convective total enthalpy equation $Dh_0/Dt = \dots$ along the column thermal, determine the change in the h_0 from a point 1 at ground level to a point 2 at 1000 m altitude. Determine the corresponding change in static temperature $T_2 - T_1$.

b) Explain why the flow along the column is isentropic.

c) Determine the density change $\rho_2 = \rho_1$ inside the column, and the ratio of column's cross-sectional areas A_2/A_1 .

